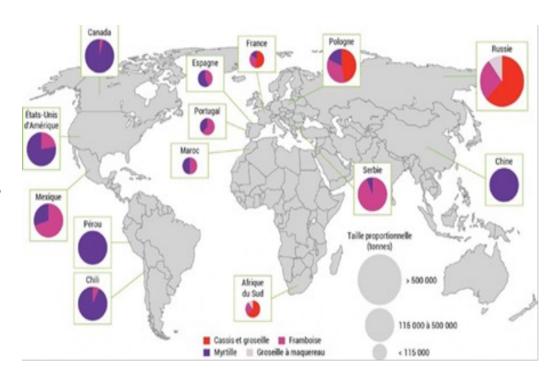
Gestion climatique en cultures protégées : une condition essentielle pour la réussite de la production de fruits rouges

Hicham Fatnassi

INRAE PACA Research Center

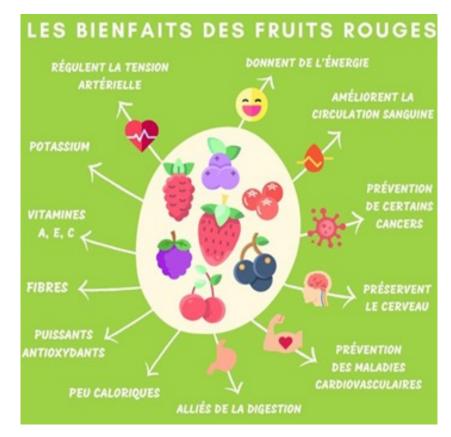

PSH Research Unit (Plants and cropping Systems in Horticulture)

228 Route de l'Aérodrome, CS 40509 Domaine Saint Paul, site Agroparc, 84914 AVIGNON CEDEX 9, France

Production des fruits rouges mondiale

- La production mondiale de petits fruits rouges est de l'ordre de 4 millions de tonnes:
 - La myrtille est en tête avec 1,8 million de tonnes produites.
 - La framboise 0,9 million de tonnes.
 - Cassis et groseille avec 0,7 million de tonnes.

Principales productions de petits fruits rouges dans le monde (Moyenne 2020-2022) Source: FAOSTAT, IBO, sites nationaux;


Élaboration: CTIFL, France

Importance nutritionnelles des fruits rouges

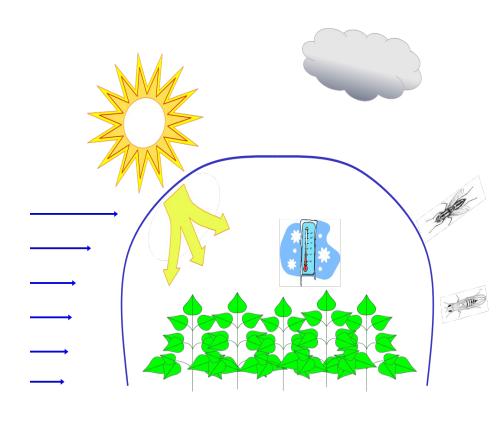
Riches en antioxydants : Leur teneur élevée en flavonoïdes, polyphénols, anthocyanes et vitamine C permet de lutter contre le stress oxydatif, de réduire l'inflammation et de protéger les cellules du vieillissement prématuré.

Santé cardiovasculaire : contribue à la bonne santé des veines et des artères, à réduire le taux de cholestérol, à améliorer la fluidité du sang et à faire baisser l'hypertension grâce au potassium et aux anthocyanes.

Soutien du système immunitaire : Leur richesse en vitamine C et autres micronutriments (vitamines B, K, fer, magnésium, calcium) stimule les défenses naturelles et aide à réduire la fatigue.

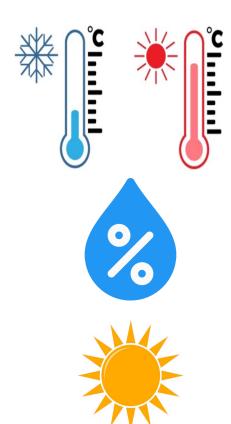
La serre : un outil de contrôle... si elle est bien gérée

Optimiser les conditions de croissance végétale en régulant les paramètres physiques et biologiques internes.


Température : accumulation et dissipation de chaleur, ventilation, chauffage.

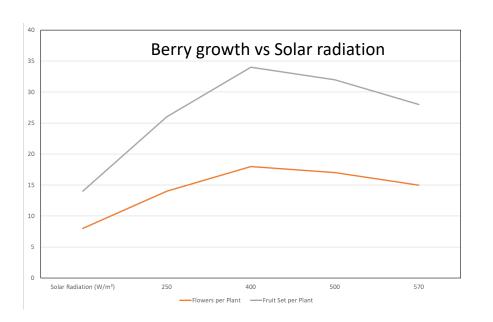
Humidité relative : gestion de l'évapotranspiration, nébulisation, déshumidification.

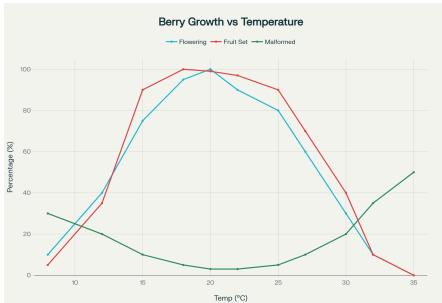
Rayonnement lumineux : transmission sélective, ombrage dynamique, films photo-sélectifs.

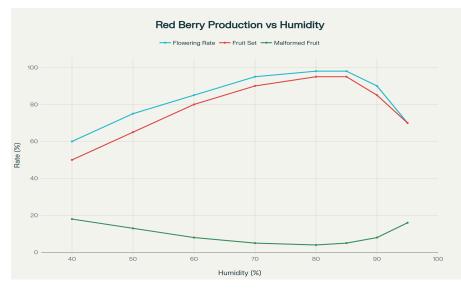

 CO_2 & échanges gazeux : enrichissement en CO_2 , contrôle de la ventilation.

- Croissance et rendement accrus.
- Réduction des stress abiotiques (sécheresse, chaleur, froid).
- Agriculture durable en milieu contraint (zones arides, climats extrêmes).

Paramètres climatiques optimaux pour assurer une production des fruits rouges sous serres


- Températures optimales :
 - Le jour 15–24 °C pour la majorité des fruits rouges,
 - La nuit il faut maintenir une température mini de 15 °C.
- Humidité relative idéale : 65–80 % (éviter excès maladies)
- Lumière : un minimum de 6 heures d'ensoleillement direct (éviter excès, installer l'ombrage)
- CO₂: enrichissement 800–1000 ppm pour simuler la croissance.

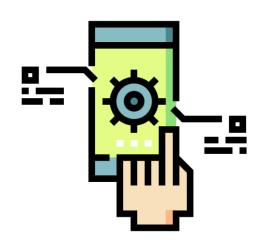


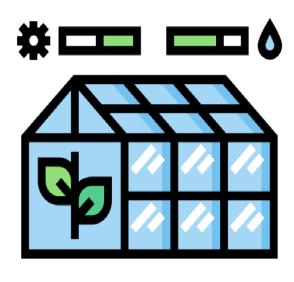


Effets du microclimat sous serre sur la physiologie des fruits rouges

- Maintenir les températures optimales favorise la floraison et la fructification
- Humidité : impact sur fermeté et conservation post-récolte
- CO₂ et lumière → accumulation sucres, arômes et anthocyanes

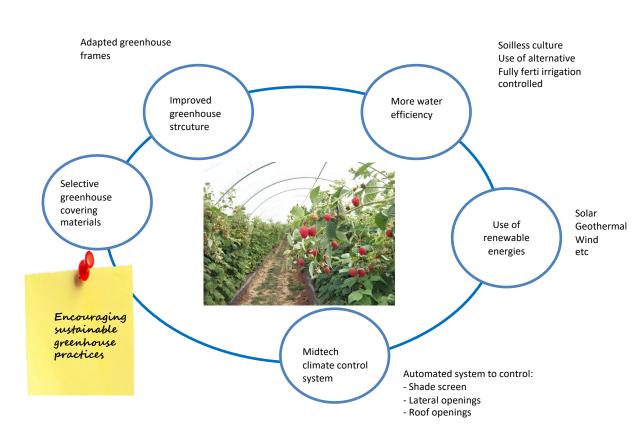
Effets sur l'état sanitaire des fruits rouges


- Humidité élevée favorise le développement du botrytis, tavelure et maladies cryptogamiques;
- Températures modérées à élevées propices au blanc (oïdium), attaque rapide même sans apport d'eau directe;
- Chaleur et sécheresse favorisent acariens et araignée rouge (toiles, points jaunes/bruns), flétrissement, foliarité et affaiblissement général.

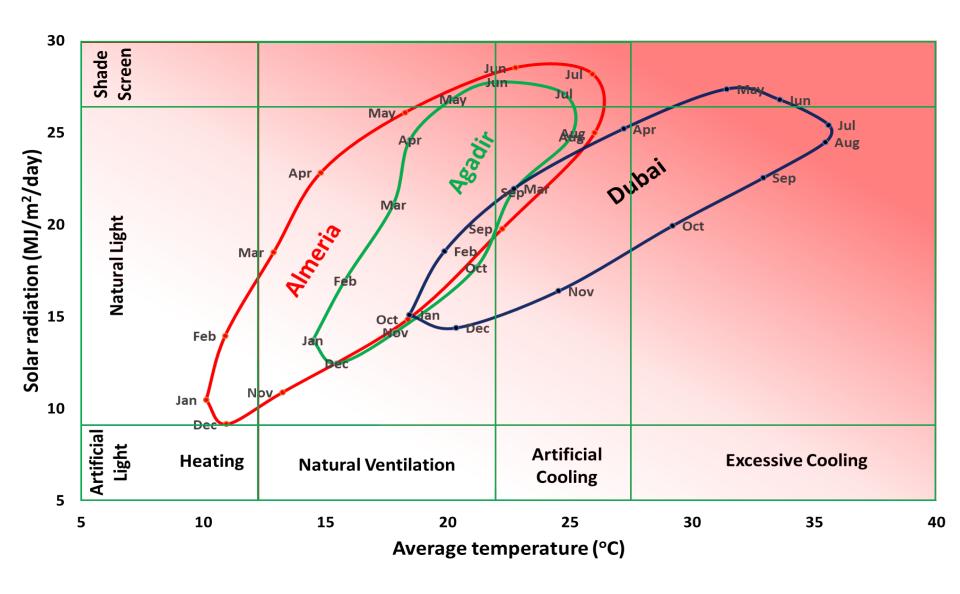


Recommandations opérationnelles

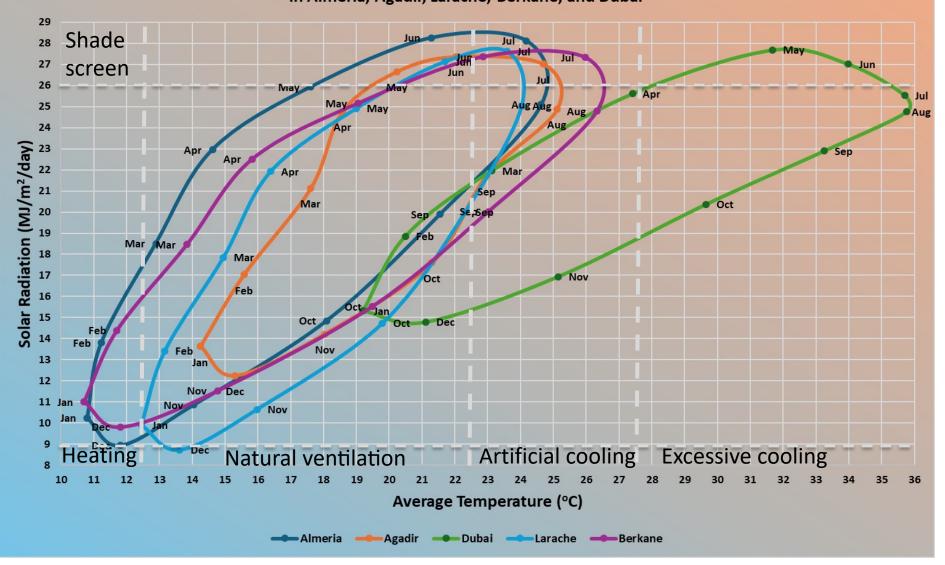
- Cibles: Jour T=22-26°C; Nuit T=12-16°C; VPD=0,6-1,2 kPa; HR>60 %; CO₂=700-800 ppm matin.
- Règles: Ombrage 40–60 % dès 10– 11h; Brumisation par pulses si VPD>1,2; Aération progressive dès 26–27°C.
- Eviter HR>90 % prolongée.


Recommandations pour éviter le développement de maladies

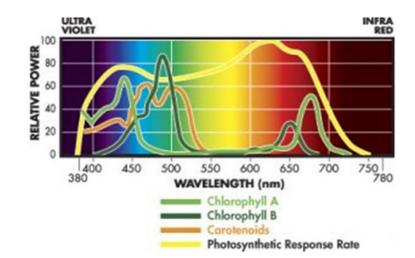
- Surveiller la condensation et prévoir une bonne ventilation.
- Guetter le développement de poudre blanche sur feuilles et fruits.
- Espacer les plants pour éviter les maladies cryptogamiques
- Respecter un espace de 30 à 40 cm entre chaque plant et 80 à 100 cm entre les rangs pour favoriser la circulation de l'air et la lumière.
- Retirer régulièrement les feuilles, fruits abîmés ou malades.



Stratégies de gestion climatique


- Chauffage, ventilation, écrans thermiques
- Contrôle de l'humidité
- Éclairage et diffusion de lumière
- Systèmes automatisés de pilotage climatique

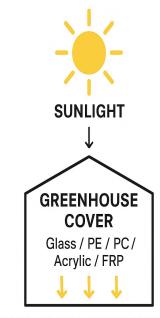
Besoins en chauffage, ventilation et climatisation (HVAC) des serres dans la région d'Agadir



Monthly Average Temperature and Solar Radiation for the period 1991-2020 in Almeria, Agadir, Larache, Berkane, and Dubai

Optimisation du rayonnement lumineux en serre

Gestion du rayonnement lumineux : un levier clé pour le contrôle du microclimat et la photosynthèse:



- Transmission sélective des matériaux de couverture : filtrer les rayons UV, maximiser la lumière utile (PAR).
- Ombrage dynamique : écrans ou filets modulant l'intensité lumineuse selon les besoins et conditions extérieures.
- Spectre modulé : films photo-sélectifs adaptant le spectre lumineux pour stimuler certaines réponses physiologiques (croissance, floraison, accumulation de métabolites).

Choix optimal des matériaux de couverture pour une production performante des cultures sous serres

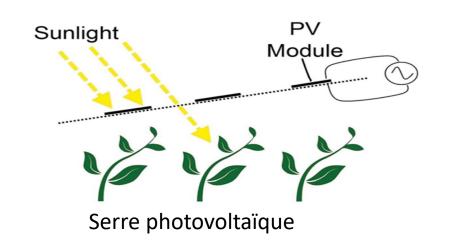
Type of Cover	Material Examples	Light Transmission (%)	Thermal Retention	Durability	Effect on Plant Growth
Glass	Float, Tempered	85–90	High	Very high	Excellent light; ideal for high-light crops; high cost.
Polyethylene Film (PE)	LDPE, EVA	75–90	Moderate–High	2–5 years	Fast growth; diffuse light; economical; UV degradation.
Polycarbonate	Twin/multi-wall	80–88	Very high	10–20 years	Stable temp; good for temperate crops.
Acrylic (PMMA)	Rigid panels	85–92	Moderate	10–15 years	High light; brittle; ornamental crops.
Fiberglass (FRP)	Reinforced polyester	75–85	Moderate	8–10 years	Diffused light; yellows over time.

CONTROLLED ENVIRONMENT

(Temperature, Humidity, CO₂, Light Intensity)

La couverture idéale pour une serre produisant des fruits rouges: une bâche plastique transparente, thermique ou diffusante, avec traitement anti-UV, d'une épaisseur de 200 microns minimum et conçue pour assurer une bonne luminosité, chaleur homogène

Optimisation des structures de serres pour maximiser le rendement

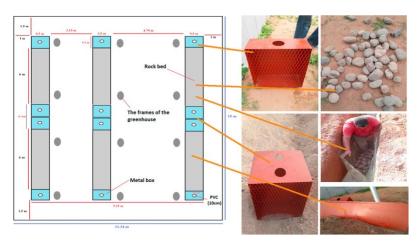

- A court-moyen terme:
 - ✓ Améliorer l'existant
 - ✓ Mettre en ouvre des sources alternatives d'énergie
- A long terme: imaginer d'autres modèles de serres
 - ✓ Serre semi-fermée pour un contrôle accru
 - ✓ Serre bioclimatique

Réduction de l'empreinte carbone de la production des fruits rouges sous serres

Serre photovoltaïque une solution durable pour la production des fruits rouges au Maroc

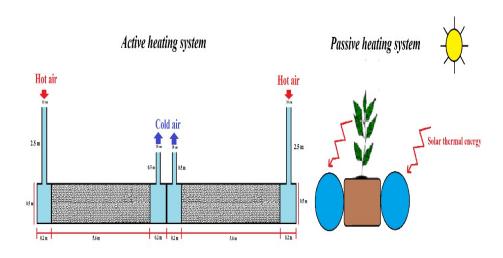
Serre PV de 3000 m2 À Sames, dans les Pyrénées-Atlantiques (ref La France Agricole).

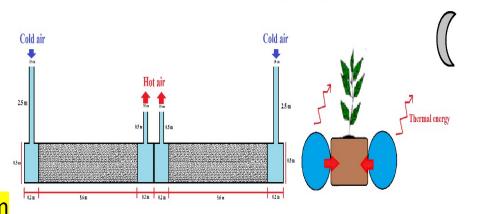
Utilisation de l'energie photovoltaique: écran d'ombrage solaire pour les applications en serre


Semi-transparent photovoltaic film easy to roll in/out

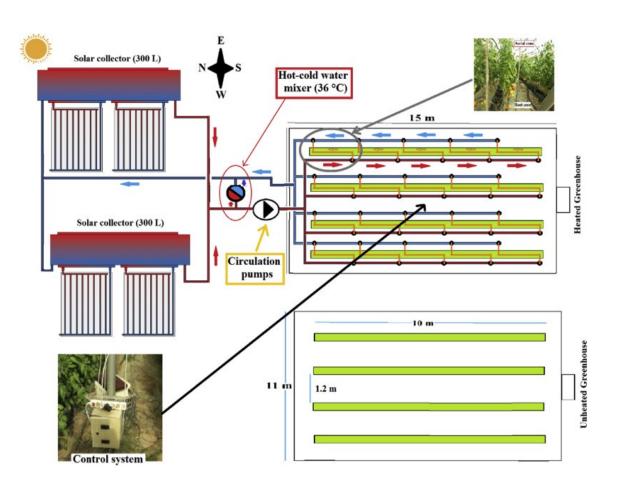
Innovative flexible photovoltaic panels

- This original concept stands on a strong expertise on greenhouse management (INRAE), associated with, experts on PV technology (SOLARCLOTH SYSTEM).
- Patent (SOLARCLOTH-INRA),


Utilisation des systèmes de chauffage thermique et géothermique

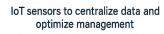


Rock-bed thermal storage heating system



Thermal storage water—sleeve heating system

Utilisation des systèmes de chauffage solaire actifs



Vers des serres intelligentes, robotisées et connectées

- Suivi en temps réel du microclimat autour de la plante.
- Capteurs IoT pour centraliser les données et optimiser la gestion.
- Utilisation de l'IA pour l'analyse des données et l'anticipation des maladies, les ravageurs et les besoins nutritifs.
- Robots pour la surveillance des cultures (bras manipulateurs, drones intraserres, ...).
- Vers plus d'autonomie, serres auto-régulées, réduisant la dépendance à l'intervention humaine.

Intelligent, Robotic, and Connected Greenhouses

Real-time microclimate monitoring

Al for data analysis and anticipation Towards more autonomy, self-regulating greenhouses, reducing dependence on human intervention

Conclusion

 La gestion climatique est la clé de la réussite de la production des fruits rouges en serres.

Equilibre entre rendement, qualité et durabilité

 Se tourner vers les nouvelles technologies : levier majeur pour l'avenir.

Q&A and Open Discussion

- Answers to questions
 - Discussion.
- Summary of key points

