

Every drop counts: optimizing irrigation and drainage with data and Al.

a

SCWIT

Smart Water Management through Data

Bridging the data gap on farms through technology to better adapt to water stress and

optimize water management.

The accessibility of opensource satellite data provides a valuable source of agricultural information without requiring any investment.

Only 10 to 15% of farms currently utilize opensource data.

Sensors for smart
management and
precise control of water use.

Between 5 and 10% of farms worldwide use connected sensors or IoT technologies to manage irrigation.

Use of AI to optimize agricultural management and monitoring in the face of water scarcity.

Less than 5% of farms currently use AI-based

technologies for irrigation management.

Turning farm data into drivers of performance and resilience.

Global Overview

Current Challenges in Greenhouse Irrigation

Insufficient Precision

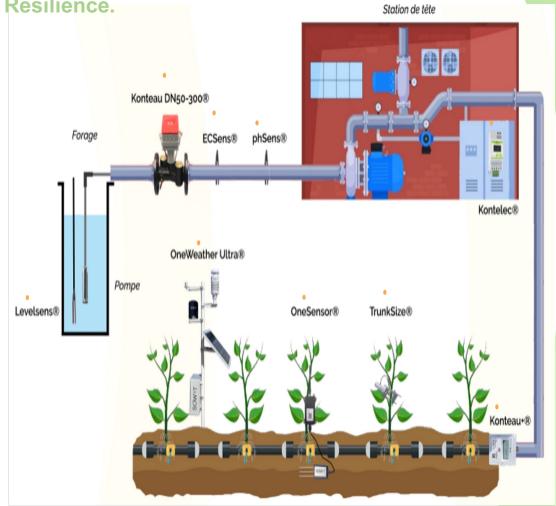
Lack of Real-Time Data

Challenges in Managing Variability

Drainage Issues

High Water and Energy Consumption

Insufficient Traceability and Historical Records


Challenges

From Intuitive Management to Scientific, Data-Driven Control.

Turning Farm Data into Drivers of Performance and Resilience.

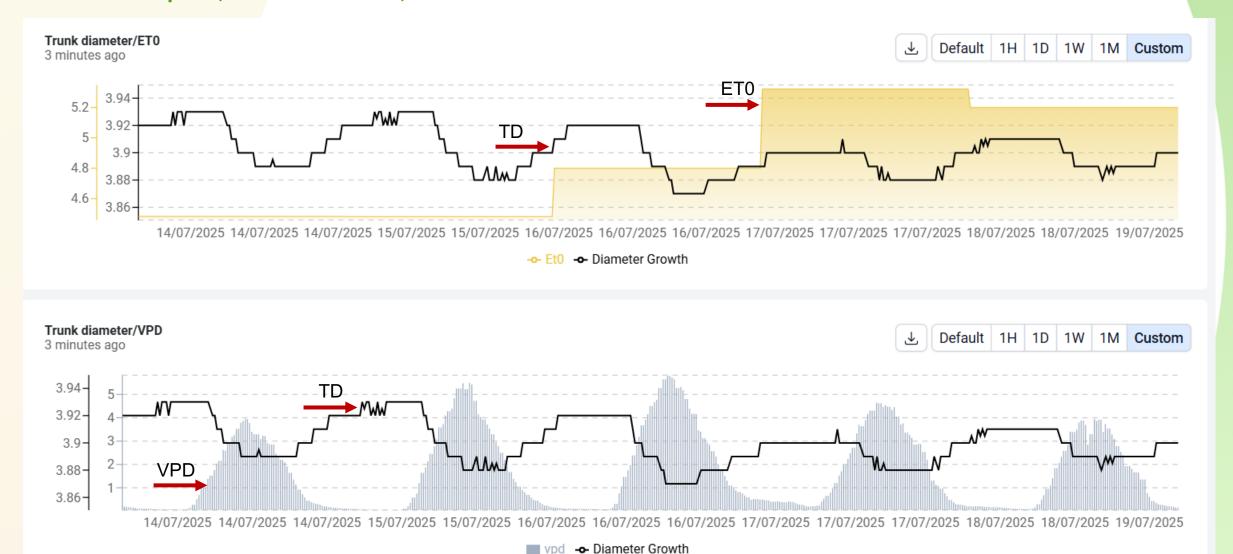
Greenhouse

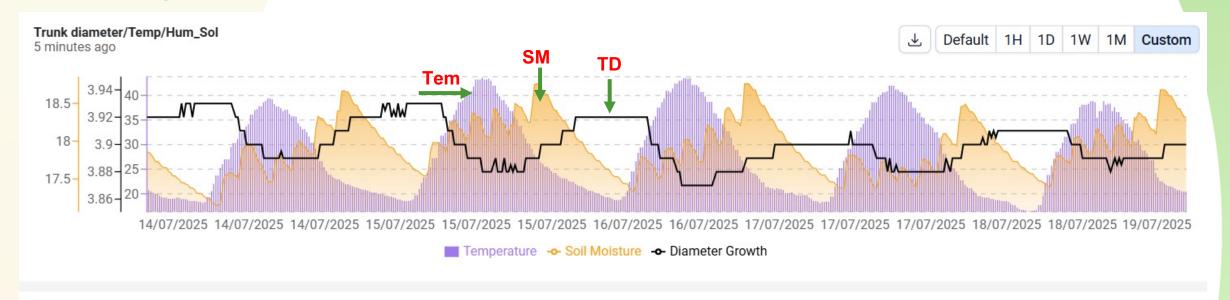
- □ Is my microclimate under control? Monitoring environmental interactions.
- ☐ How much am I supplying and how much am I draining?
- Is my water available and of good quality?
 Smart management of the resource in terms of quantity and quality.

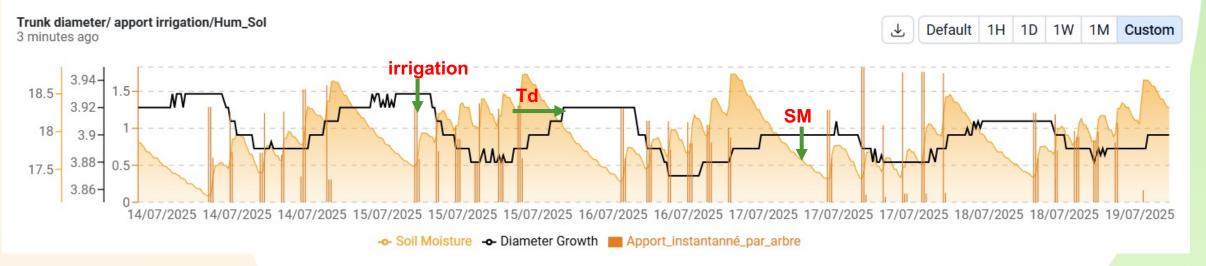
• 70% of water is used in agriculture.

Micro-variations of 2°C can affect up to 10% of yield.

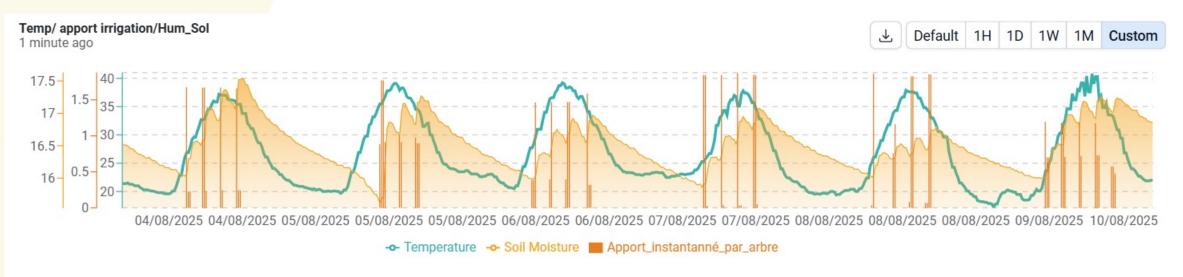
Water savings: 20–30% without yield loss.


Reduced fertilizer loss / improved fertigation efficiency.


Indicator	Before (Traditional Method)	After IoT + AI Integration	Improvement
Water Consumption	1000 L/m²	700 L/m²	-0,3
Yield	2,5 kg/m²	3,1 kg/m²	0,24
Losses Due to Water Stress	0,15	0,05	-0,66



Accurate evaluation of water performance requires an integrated approach that considers the interactions between the plant, the microclimate, and the soil.



Accurate evaluation of water performance requires an integrated approach that considers the interactions between the plant, the microclimate, and the soil.

Accurate evaluation of water performance requires an integrated approach that considers the interactions between the plant, the microclimate, and the soil.

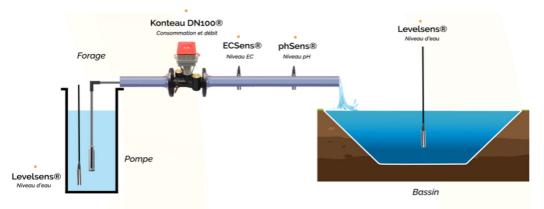
- Substrate Moisture
- Temperature
- ✓ VPD
- Solar Radiation

- Intelligent Climate Control
- Automatic management of misters and heaters
- Reduction of daily temperature fluctuations
- Better control of VPD

Observed Results:

- Reduction in water consumption: -30%
- Increase in average fruit size:
- +18%
- More uniform production

USE-CASE: Pumping Control


Monitor my well's potential and water reserves.

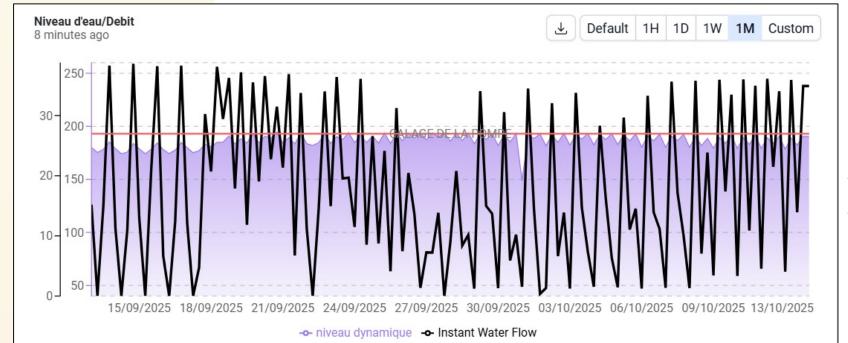
Preservation of water resources and soil (less over-pumping, less salinization).

Reduction of water volumes by 20–30% on average without any loss of production.

Preservation of the aquifer → prevents shortages and extends the lifespan of wells.

Water Balance

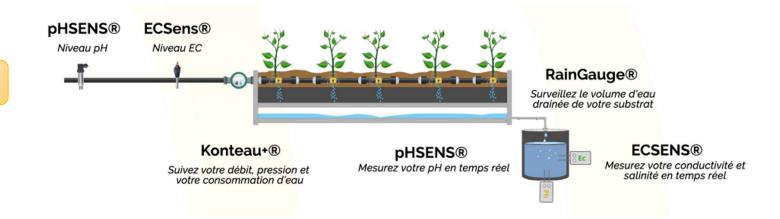

Decisions based on historical observations.


Late detection **of changes in aquifer levels and** water reserves.

Risk of over- or under-use of water, leaks...

USE-CASE: Pumping Control

- Monitor my well's potential and water reserves.
- Water level in the well (or drawdown).
- Detect over-pumping or a weak aquifer.
- Calculate drawdown.
- **Determine the depth** of the aquifer.


- Flow / Level
- Determine the sustainable capacity of the well.
- Water consumption
- Enables planning for sustainable management

USE-CASE: Drainage

How to effectively monitor drainage rates, flow rates, as well as EC and pH levels, while benefiting from real-time tracking and daily reports.

Agronomic and Logistical Benefits:

Fewer root diseases related to excess water.

Optimized operations:

Prioritization of drainage investments based on proven high-risk zones (using spatial data).

Reduced leaching (monitored drainage EC).

Improved irrigation efficiency \rightarrow soil becomes more predictable.

USE-CASE: Drainage

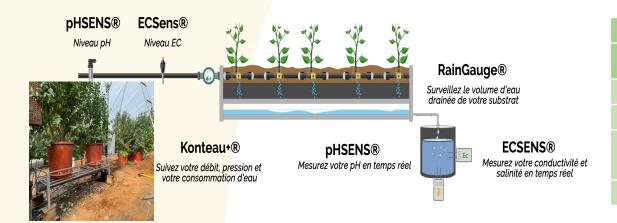
Monitor drainage rates, flow rates, as well as EC and pH levels in real time.

Controlled Drainage via IoT

- Use of connected sensors to measure in real time:
- Substrate moisture
- Input / drained volume
- ❖ EC and pH In/Out
- Data automatically transmitted to the platform.
- Irrigation automated and adjusted according to real conditions (VPD, radiation, growth).

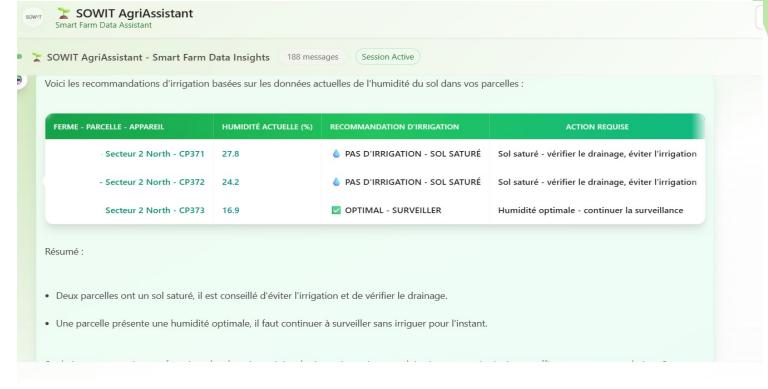
Drainage (Manual Control

- Irrigation often based on observations.
- Risk of under- or over-irrigation, leading to: Significant water loss (up to 30-40%).
- Fluctuating substrate salinity.
- Uneven yields.
- Difficulty in detecting water stress.



USE-CASE: Drainage

Monitor drainage rates, flow rates, as well as EC and pH levels in real time.



Indicator	Manual Drainage	I <mark>oT-Controlled</mark> Drainage	Improvement
Water Consumption	1000 L/m²	750 L/m²	-25 %
Yield	2,8 kg/m²	3,3 kg/m²	+18 %
Plant Uniformity	Average	Excellent	~
Nutients loss	High	Reduced	-40 % 🌿

tour_number	drain_time_start	duration_minutes	ec_in	ph_in	ec_out	ph_out	drainage_percentage	delta_ec	delta_ph	quantity_water_in	quantity_water_out
1	2025-04-14 09:47:10.093000	5	3.75	6.16	0.0	6.74	0.0	-3.75	0.58	0.67	0.0
2	2025-04-14 10:22:10.092000	10	3.81	6.18	5.94	7.35	39.85	2.13	1.17	1.33	0.53
3	2025-04-14 11:42:10.201000	10	3.77	6.2	5.93	7.34	58.0	2.16	1.14	2.0	1.16
4	2025-04-14 12:37:30.195000	5	3.7	6.19	0.39	7.29	8.27	-3.31	1.1	1.33	0.11
5	2025-04-14 13:07:10.095000	10	3.74	6.18	5.35	7.32	53.38	1.61	1.14	1.33	0.71
6	2025-04-14 13:47:10.215000	10	3.75	6.17	5.33	7.27	36.5	1.58	1.1	2.0	0.73
7	2025-04-14 14:27:10.131000	10	3.75	6.17	5.33	7.35	54.14	1.58	1.18	1.33	0.72
8	2025-04-14 15:07:09.716000	10	3.8	6.14	0.63	7.46	59.4	-3.17	1.32	1.33	0.79
9	2025-04-14 15:47:09.679000	5	3.79	6.14	0.17	7.3	53.38	-3.62	1.16	1.33	0.71
10	2025-04-14 16:27:10.290000	5	3.79	6.14	0.06	7.05	46.62	-3.73	0.91	1.33	0.62

Irrigation: When Plants Speak Data

Ack about your farm cancers soil conditions or weather data

"With AI and IoT, irrigation stops guessing and starts listening—because even plants deserve a little data-driven wisdom."

Thank you

GHIZLANE MAKHCHANE
Head of Agronomy and Technical Services
Ghizlane.makhchane@sowit.fr

FADWA EI HAIFI
Key account Manager –South Morocco
Fadwa.elhaifi@sowit.fr

