




#### Mexico is a leader in berry production and export

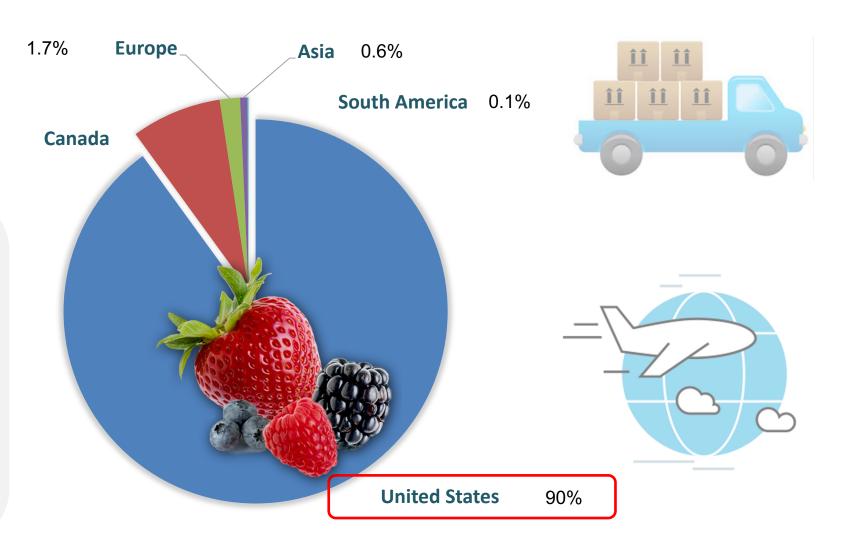













#### **Export markets for Mexican berries**



#### Quality attributes of berries for export to USA:

- √ Brix degrees
- **√** Firmness
- √ Color (appearance)
- √ Size
- ✓ "Bloom"
- ✓ Pesticide-free



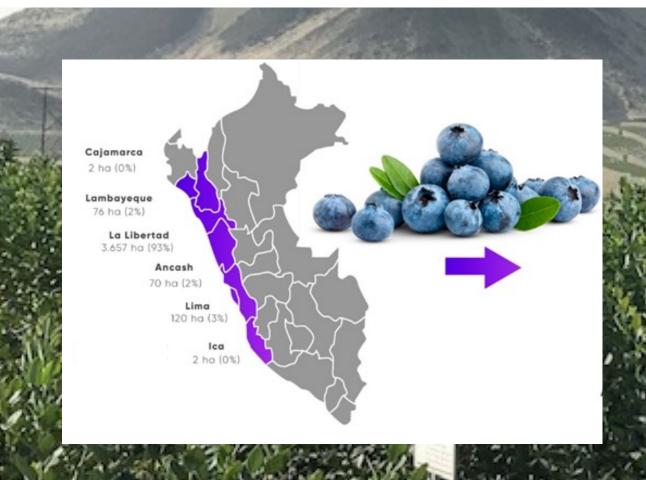


# Innovation in Mexican berries is a pillar of the virtuous triangle Academy-Government-Industry





#### Mexican berry export calendar to USA




Berries production in Mexico covers approximately 50,000 hectares (2025)



#### Peru, leader in blueberry production and exports

Peru currently has 26,600 hectares of blueberries









### Blueberry production in loamy soil in Central Mexico







# Blueberries production in protected structures (Central Mexico)





### Raspberry and strawberry production in Central Mexico

It is estimated that the total area of berries under protected agriculture (which includes macrotunnels, shade mesh and greenhouses) is close to 33,000 hectares





#### **Production of blueberries in substrate (Mexico)**

#### **Dutch mix**

1/3 peat 1/3 perlite 1/3 coconut fiber

\*CEC > 100 cmol(+)/kg



\*CEC = Cation Exchange Capacity



### Production of blueberries in coconut fiber and chips (Mexico and Peru)

Coconut fiber CEC > 50 cmol(+)/kg

Coconut chips
\*CEC < 50 cmol(+)/kg





\*CEC = Cation Exchange Capacity



# Production of blueberries and blackberries in volcanic gravel (Mexico)

Recommended
particle size
3-6 mm in diameter
CEC < 20 cmol(+)/kg



\*CEC = Cation Exchange Capacity







#### Primocane raspberries production in Mexico

#### **Primocane**

Corresponds to the first year's growth ("suckers" or shoots)



#### **Floricane**

Corresponds to the second year's growth (canes)



### The largest area of raspberry plantations is in soil with a macrotunnel (Mexico)

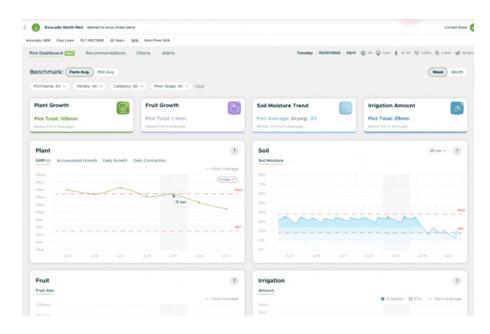
**Rustic cultivation** 

Yields:
6-8 thousand
exportable boxes





## Raspberry production in coconut fiber (pots with 7 liters of substrate)






### Remote sensing to adjust irrigation and nutrition based on environmental conditions, in Peru

#### **Advanced AI-Powered Precision Farming Platform**





Use of remote sensors for soil moisture, pH and EC due to the large areas



### Use of soil profiles ("calicates") and suction probes in Peru







The use of "calicates" allows to see the soil humidity and root development, and others





### Result of a physicochemical analysis of a sample of suction probes in blueberry

| INFORME DE SEGUIMIEN | ITO NUTRIC                             | IONAL TABLA DE D                                                                   | ATOS ANALÍTIC                      | cos                      |               |   | 13/08/2019 |
|----------------------|----------------------------------------|------------------------------------------------------------------------------------|------------------------------------|--------------------------|---------------|---|------------|
| HAGO                 | Cliente:<br>Finca<br>Parcela<br>Fecha: | AGRICOLA COPACABANA DE CHINCHA S.A.<br>FUNDO SAN LORENZO<br>SECTOR A<br>01/08/2019 | Cultivo:<br>Variedad:<br>Fenología | ARANDANO<br>ARANDANO<br> | CIP N° 221809 | 4 | (AO) asy   |

| 01/08/2019  | pН   | CE              | H2PO4- | CI-   | SO4   | NO3-    | NH4+  | Ca++  | Mg++  | Na+   | K+     | В    | Fe    | Mn    | Cu    | Zn   |  |
|-------------|------|-----------------|--------|-------|-------|---------|-------|-------|-------|-------|--------|------|-------|-------|-------|------|--|
|             |      | dS/m a<br>25° C | mg/L   | meq/L | meq/L | meq/L   | meq/L | meq/L | meq/L | meq/L | meq/L  | mg/L | mg/L  | mg/L  | mg/L  | mg/L |  |
| SFR         | 6,09 | 1,05            | 57,1   | 2,61  | 7,11  | 0,59    | 0,53  | 7,81  | 2,60  | 1,43  | 0,83   | 0,34 | <0,05 | <0,05 | <0,05 | 14,4 |  |
| SONDA 15 cm | 6,84 | 1,82            | 36,0   | 1,41  | 12,0  | 6,50    | <0,28 | 16,4  | 5,49  | 2,38  | 1,57   | 0,71 | <0,05 | <0,05 | 0,08  | 0,68 |  |
| SONDA 30 cm | 6,75 | 1,75            | 35,9   | 1,38  | 12,4  | 6,60    | <0,28 | 17,0  | 5,67  | 2,46  | 1,62   | 0,74 | <0,05 | <0,05 | 0,08  | 0,61 |  |
| SONDA 45 cm | 7,58 | 2,01            | 3,93   | 0,87  | 19,2  | 4,31    | <0,28 | 21,2  | 5,93  | 3,03  | 1,92   | 0,65 | <0,05 | <0,05 | 0,06  | 0,22 |  |
| Índices     |      | X1,8            |        | X0,5  |       | -1 004% |       |       |       | X1,8  | -12,4% |      |       |       |       |      |  |

| 03/07/2019  | pН   | CE              | H2PO4- | CI-   | SO4   | NO3-   | NH4+  | Ca++  | Mg++  | Na+   | K+    | В    | Fe    | Mn    | Cu    | Zn   |  |
|-------------|------|-----------------|--------|-------|-------|--------|-------|-------|-------|-------|-------|------|-------|-------|-------|------|--|
|             |      | dS/m a<br>25° C | mg/L   | meq/L | meq/L | meq/L  | meq/L | meq/L | meq/L | meq/L | meq/L | mg/L | mg/L  | mg/L  | mg/L  | mg/L |  |
| SFR         | 5,29 | 1,73            | 46,0   | 1,22  | 8,22  | 3,18   | 0,89  | 6,52  | 2,86  | 0,87  | 2,12  | 0,25 | 0,32  | 0,06  | <0,05 | 34,6 |  |
| SONDA 15 cm | 6,59 | 2,23            | 27,4   | 1,22  | 12,1  | 4,97   | <0,28 | 13,6  | 3,93  | 1,87  | 1,01  | 0,51 | <0,05 | <0,05 | 0,09  | 0,33 |  |
| SONDA 30 cm | 6,62 | 2,24            | 28,4   | 1,22  | 12,2  | 4,90   | <0,28 | 13,9  | 3,98  | 1,86  | 1,01  | 0,52 | <0,05 | <0,05 | 0,09  | 0,29 |  |
| SONDA 45 cm | 7,09 | 2,30            | 15,1   | 0,99  | 13,8  | 3,65   | <0,28 | 14,5  | 3,81  | 2,00  | 1,09  | 0,58 | <0,05 | <0,05 | 0,07  | 0,14 |  |
| Índices     |      | X1,3            |        | X0,9  |       | -18,0% |       |       |       | X2,2  | 77,6% |      |       |       |       |      |  |

| HOJAS ARANDA | N Total | P    | K    | Ca   | Mg   | S    | Na    | CI    | В     | Fe    | Mn    | Cu    | Zn    | Mo    |
|--------------|---------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|
|              | %       | %    | %    | %    | %    | %    | mg/kg |
| 27/02/2019   | 3,24    | 0,04 | 0,71 | 0,56 | 0,20 | 0,33 | 1 479 | 333   | 157   | 258   | 249   | 7,44  | 91,7  | 0,69  |
| 29/03/2019   | 2,22    | 0,15 | 0,71 | 0,90 | 0,21 | 0,32 | 349   | <250  | 138   | 270   | 210   | 41,7  | 64,5  | 1,59  |
| 29/04/2019   | 2,20    | 0,17 | 0,64 | 0,80 | 0,21 | 0,19 | 364   | 454   | 82,5  | 272   | 167   | 12,6  | 31,7  | 0,99  |
| 28/05/2019   | 2,07    | 0,13 | 0,61 | 1,20 | 0,20 | 0,32 | 486   | <250  | 92,8  | 174   | 207   | 7,04  | 31,5  | 0,50  |
| 03/07/2019   | 2,08    | 0,11 | 0,84 | 1,12 | 0,17 | 0,40 | 788   | 441   | 148   | 326   | 238   | 13,0  | 42,8  | 1,05  |
| 01/08/2019   | 2,06    | 0,12 | 1,01 | 1,22 | 0,15 | 0,59 | 1 455 | 821   | 175   | 231   | 257   | 25,5  | 39,8  | 0,79  |

Suction probe analyses (soil or substrate) are used to adjust fertigation programs according to weather conditions and phenological stages.



### Nutrient solutions for blueberry production in different phenological stages

| Phenological stage        |          | Cations          | s (meq/L)        | Anions (meq/L) |                   |                                  |                    |
|---------------------------|----------|------------------|------------------|----------------|-------------------|----------------------------------|--------------------|
|                           | $NH_4^+$ | Ca <sup>+2</sup> | Mg <sup>+2</sup> | K <sup>+</sup> | NO <sub>3</sub> - | H <sub>2</sub> PO <sub>4</sub> - | SO <sub>4</sub> -2 |
| Pruning - shoot formation | 1-2      | 2-3              | 1-1.5            | 1-1.5          | 1.5-2             | 0.5-1                            | 2-4                |
| Shoot formation - bloom   | 2-3      | 3-4              | 1.5-2            | 1.5-2          | 1.5-2             | 0.5-1                            | 2-4                |
| Bloom - fruit set         | 1-2      | 4-5              | 2                | 3              | 3.5-4.5           | 1-1.5                            | 2-4                |
| Fruit set - harvest       | 1        | 4                | 2                | 5              | 2.5-3.5           | 0.5-1                            | 2-4                |
| Harvest - postharvest     | 2        | 2                | 1                | 1.5            | 2-2.5             | 0.5-1                            | 2-4                |



# Monitoring strawberry nutrition using suction probes in clay soils















#### Monitoring berry nutrition using sap analysis













|            | Pheno       | logical stages |                |
|------------|-------------|----------------|----------------|
| Parameters | Vegetative  | Bloom          | Fructification |
|            |             | mg/L           |                |
| N-NO3      | 1000 - 1500 | 500 - 1000     | 100 - 500      |
| P-PO4      | 250 - 300   | 200 - 250      | 100 - 200      |
| K          | 2000 - 2500 | 1500 - 2000    | 1000 - 1500    |
| Ca         | 50-100      | 50-100         | 50-100         |
| Mg         | 60 - 100    | 40 - 60        | 50 - 100       |
| S-SO4      | 700 - 800   | 550 - 700      | 450 - 550      |
| Fe         | 0.09 - 0.15 | 0.08 - 0.15    | 0.1 - 0.13     |
| Mn         | 1 - 3       | 0.5 - 1        | 0.2 - 0.5      |
| В          | 3 - 5.5     | 1 - 3          | 0.1 - 1        |
| Cu         | 4 - 6       | 1 - 4          | 0.5 - 1        |
| Zn         | 1.5 - 2     | 1 – 1.5        | 0.5 - 1        |



#### Berries nutrition challenges: salty water management

Blueberry
production in
Baja California,
Mexico
(saline waters,
\*EC = 20 dS/m
with reverse
osmosis)

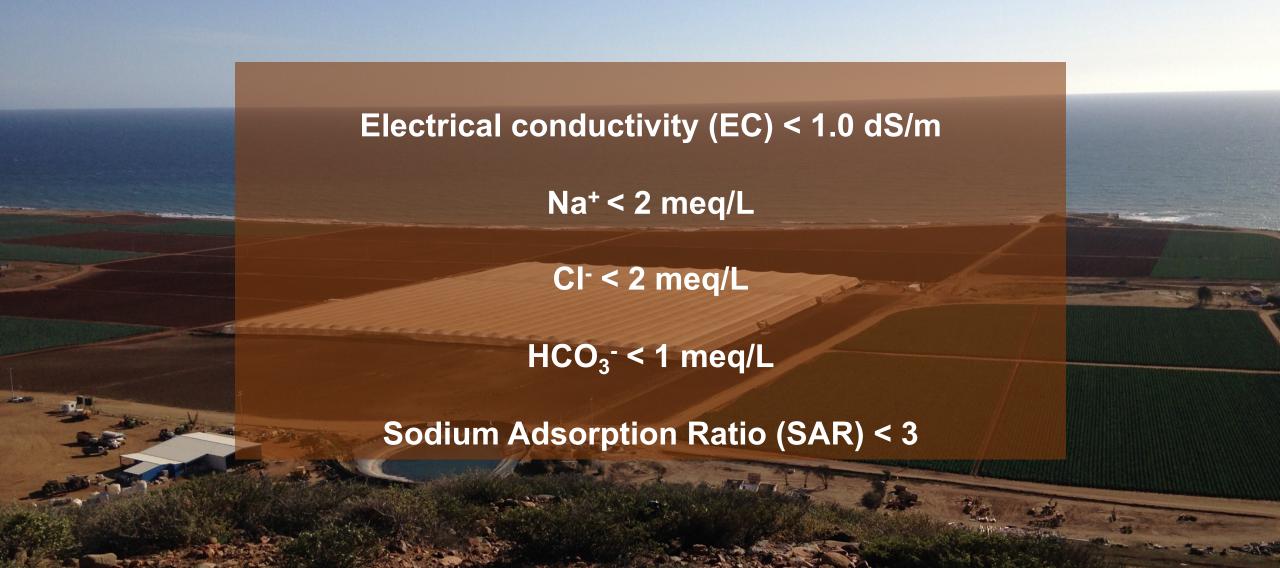
Cost of water: 1USD/m<sup>3</sup>



\*EC = electrical conductivity



### Berries nutrition challenges: saline coastal aquifers - Na<sup>+</sup> and Cl<sup>-</sup> management






Strawberry production in sandy soils and salty waters in Baja California, Mexico (100 tons per hectare)



### Optimal salinity parameters in irrigation water, recommended for berries





### Decreased berry yield as a function of irrigation water salinity

| Crop       | *EC (dS/m) at which performance decreases by: |     |     |  |  |  |  |  |  |  |
|------------|-----------------------------------------------|-----|-----|--|--|--|--|--|--|--|
|            | 10%                                           | 25% | 50% |  |  |  |  |  |  |  |
| Blackberry | 1.5                                           | 2.0 | 2.5 |  |  |  |  |  |  |  |
| Blueberry  | 1.0                                           | 1.5 | 2.0 |  |  |  |  |  |  |  |
| Raspberry  | 1.5                                           | 2.0 | 2.5 |  |  |  |  |  |  |  |
| Strawberry | 1.5                                           | 2.0 | 2.5 |  |  |  |  |  |  |  |

<sup>\*</sup>EC – electrical conductivity



### Osmotic, ionic and oxidative stress in berries, generated by excess salts in the water



Excess sodium, chlorides and bicarbonates in blueberries



Excess chlorides in raspberries



Sodium chlorides in raspberries



#### Irrigation and Drainage Management (Leaching)



#### Frequent and intermittent irrigation:

Because blueberries have shallow roots, they should be irrigated frequently and in short bursts (watering for 5 to 15 minutes, several times a day). This minimizes "jumps" in the Electrical Conductivity (EC) of the growing medium and prevents both drought and waterlogging.







#### Increasing the leaching rate (Drainage):

To "wash" excess salts from the substrate, it is essential to maintain a drainage rate of more than 15% or 20% (it can reach 25% or more). This leachate discharges harmful salts (mainly chlorides and sodium) into the substrate.





#### **Constant monitoring:**

It is crucial to measure the EC and pH of the irrigation water (inlet) and the drainage solution (outlet). If the EC of the drainage is significantly higher than that of the irrigation, it indicates that salts are accumulating and drainage needs to be increased.







Use of Pre- and Post-irrigation:

Some systems apply a small initial irrigation with water alone (or acidified water) to moisten the substrate, followed by the nutrient solution, and then a final irrigation with water to clean the lines and reduce salt concentrations at the end of the wet bulb.







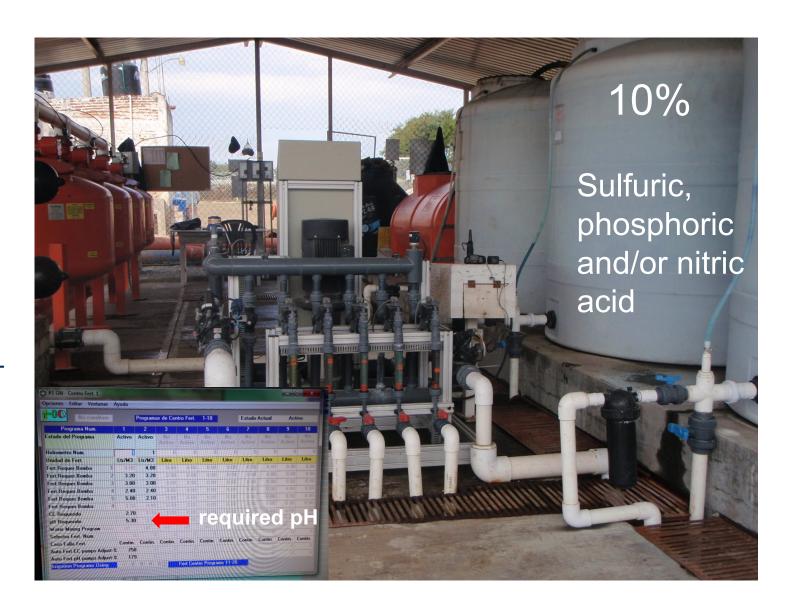
# Constant monitoring of nutrient solution (inlet), saturated paste of the substrate and drainage (outlet): pH, EC, and ions










### Use of synthetic acids for the management of alkaline waters

#### Main acids used in berries fertigation

Sulfuric acid  $HCO_3^- + H_2SO_4 \longrightarrow H_2O + CO_2^+ + SO_4^{-2}$ 

Phosphoric acid  $HCO_3^- + H_3PO_4 \longrightarrow H_2O + CO_2^{\uparrow} + H_2PO_4^{-}$ 

Nitric acid  $HCO_3^- + HNO_3 \longrightarrow H_2O + CO_2 \uparrow + NO_3^-$ 





### Sulfur burner to acidify irrigation water with alkaline pH (>7)

The amount of sulfur to be burned depends on the volume of water, bicarbonates concentration and target pH.





#### Berries nutrition challenges: climate

#### Blueberry quality attributes affected by climate stress









Firmness

Brix

Size

Fruit dehydration



### Berries nutrition challenges: climate Blueberries in Central Mexico and Peru, May 2024





#### Berries nutrition challenges: climate





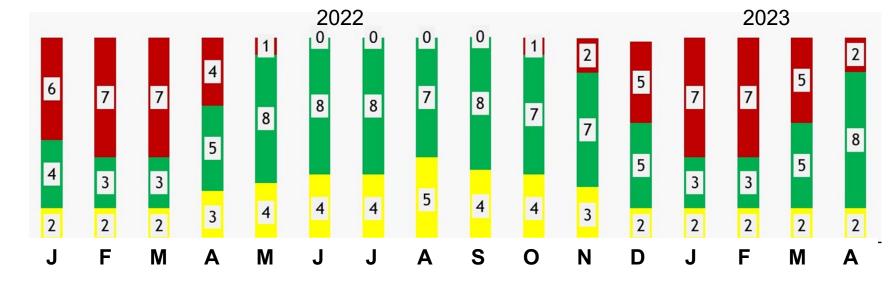

#### Berries nutrition challenges: climate







UV-B radiation effects on blueberries (North Coast of Peru, August 2024)




### Design of a climate stress management program to improve the quantity and quality of berries

The numbers in the red bars represent the number of stressful hours on average per day per month







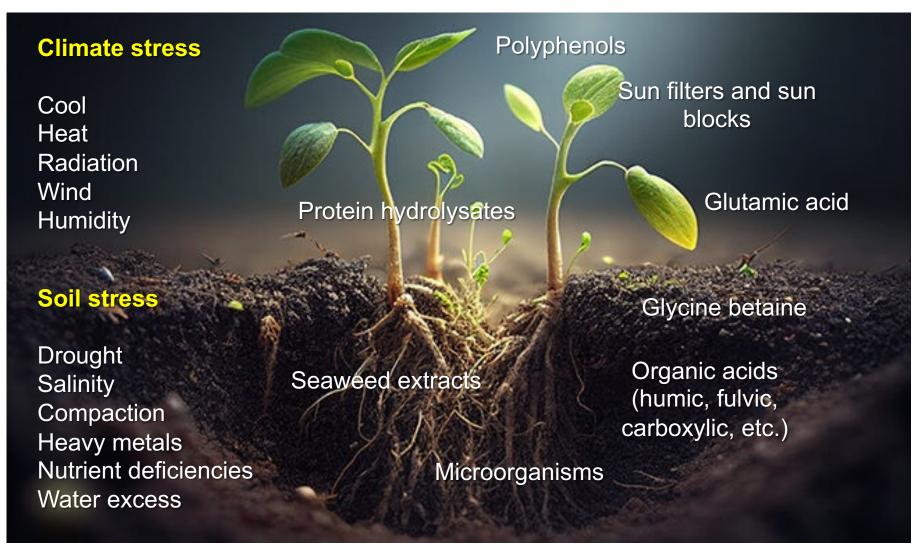
Berries close stomata (dehydration) due to climatic stress when the VPD is below 0.5 and above 1.5 kPa

| Conventional VPD values by phenological stages (Prenger and Ling, 2001) | VPD (kPa)        |
|-------------------------------------------------------------------------|------------------|
| Low transpiration (propagation/beginning of vegetative growth)          | 0.5 – 0.8        |
| Healthy transpiration (full vegetative growth/ beginning of flowering)  | 0.8 – 1.2        |
| High transpiration (Medium flowering)                                   | 1.2 – 1.5        |
| Dangerous area<br>(decrease transpiration)                              | < 0.5 - > 1.5    |
| VPD - vapor p                                                           | oressure deficit |



### Measuring stomatal conductance in blueberries to determine stress levels using a portable porometer








| Stomatal conductance level in blueberries | mmol<br>H <sub>2</sub> O/m²/s |
|-------------------------------------------|-------------------------------|
| Low                                       | < 200                         |
| Regular                                   | 200 - 400                     |
| High                                      | > 400                         |



#### Biostimulation as a support for berry nutrition





#### Evaluation of different biostimulant products to mitigate climate stress in blueberries (Piura, Peru)

#### **Benefits of biostimulants:**

- ✓ Improves fruit size
- ✓ Increases Brix levels
- ✓ Improves firmness
- ✓ Increased carbohydrate reserves
- ✓ Reduces carbon footprint
- ✓ Improves water use efficiency (WUE)

#### SPAD (chlorophyll) readings in blueberry leaves

| DAA | Control | AA – Ext | Glycine<br>betaine | Polyphenols | Ext AN | Ext L | Phyto<br>hormones | AA   |
|-----|---------|----------|--------------------|-------------|--------|-------|-------------------|------|
|     |         |          |                    | SPAD rea    | adings |       |                   |      |
| 2   | 40.3    | 40.5     | 40.5               | 44.8        | 41.0   | 43.6  | 43.2              | 40.9 |
| 16  | 41.3    | 41.1     | 41.9               | 50.5        | 43.2   | 42.8  | 45.5              | -    |
| 24  | 50.1    | 44.8     | 45.5               | 52.9        | 47.4   | 44.2  | 42.8              | 43.9 |
| 34  | 41.1    | 42.5     | 42.7               | 52.6        | 41     | 43.4  | 42.5              | 41.6 |
| 41  | 41.3    | 45.8     | 51.7               | 67.8        | 53.6   | 54.7  | 53.2              | 53.1 |

DAA = days after application; AA = amino acids; Ext = seaweeds extract; AN = Ascophyllum nodosum; L = Lithothamnium sp.



#### **Take-Home Messages**

The production of **export-quality berries** is possible even in extreme soil, water, and climate conditions.

To achieve these goals, it is necessary to use substrates such as coconut fiber and others, sulfur burners, reverse osmosis equipment, infrastructure, and biostimulants to mitigate salinity and climate stress.

Professional advice and nutritional monitoring are also necessary, using soil, substrate, water, and plant analysis, as well as the use of portable equipment and laboratories.

